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Abstract

Molecular factors enabling microbial pathogens to cause plant diseases
have been sought with increasing efficacy over three research eras that
successively introduced the tools of disease physiology, single-gene
molecular genetics, and genomics. From this work emerged a unified
model of the interactions of biotrophic and hemibiotrophic pathogens,
which posits that successful pathogens typically defeat two levels of
plant defense by translocating cytoplasmic effectors that suppress the
first defense (surface arrayed against microbial signatures) while evading
the second defense (internally arrayed against effectors). As is predicted
from this model and confirmed by sequence pattern–driven discovery
of large repertoires of cytoplasmic effectors in the genomes of many
pathogens, the coevolution of (hemi)biotrophic pathogens and their
hosts has generated pathosystems featuring extreme complexity and
apparent robustness. These findings highlight the need for a fourth re-
search era of systems biology in which virulence factors are studied as
pathosystem components, and pathosystems are studied for their emer-
gent properties.
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Effector: all pathogen
proteins and small
molecules that alter
host-cell structure and
function (36)

INTRODUCTION

What makes an evening primrose open when
it does? Why does salt water fail to satisfy
thirst? What is the description of aging in
biochemical terms?. . .They are all problems
which involve dealing simultaneously with a
sizeable number of factors which are interrelated
into an organic whole. . .Science must, over the
next 50 years, learn to deal with these prob-
lems of organized complexity.

Warren Weaver, Rockefeller
Foundation, 1948

The interactions of plants and microbial
pathogens are among the most complex
phenomena in biology. Plant diseases collec-
tively involve multiple microbial kingdoms,
diverse host and tissue specificities, a myriad of
symptoms, and a potentially unlimited variety
of pathogen molecules that can interact with
targets in virtually any cellular component of
any plant. Since the early 1900s plant patholo-
gists have been using ever more powerful tools
to seek and rigorously evaluate determinative
pathogen molecules that can explain the
development of plant diseases. However, the
notion of a determinative virulence factor for
many diseases is now challenged by recent
discoveries that pathogen genomes contain
bewilderingly complex repertoires of candidate
virulence genes and by the overwhelming
scale of the molecular invasion of host cells
by pathogens. Furthermore, we now have the
outlines of a unified model for plant-pathogen
interactions, and evolutionary expansion and
internal redundancy in several virulence factor
classes appear to be natural outcomes of this
model. Genomics has released the genie of
complexity, and consequently, the value of
different kinds of information about virulence
factors is changing. As we explain below, fulfill-
ing molecular Koch’s postulates for a candidate
virulence factor may be less useful than efforts
aimed at understanding the factor’s role(s)
in systems-oriented models of pathogenesis.
Although we use the term virulence factor
throughout this article, our thesis is that the

meaning of “factor” is increasingly becoming
synonymous with “system component.”

To develop this thesis, we address histor-
ical changes in the methods for finding and
validating virulence factors using the example
of a few well-studied factors. We summarize
the recently developed unified model of plant-
pathogen interactions, emphasizing the gen-
esis of complexity (and robustness) in some
pathosystems. We then explore the systems
properties of the type III effector repertoires
of Pseudomonas syringae strains, asking how such
effectors operate together to promote pathogen
growth. With these examples brought to the
fore, we revisit the challenge of applying molec-
ular Koch’s postulates and of categorizing viru-
lence factors and multiple classes of effectors.
Finally, we address new ways to gather, re-
port, and visualize data about virulence system
components that more efficiently yield systems-
level knowledge with greater explanatory power
and practical utility.

HOW PHYTOPATHOGEN
VIRULENCE FACTORS HAVE
BEEN FOUND AND VALIDATED

We begin with a brief historical overview be-
cause it is useful to see how the technical limi-
tations of each era functioned as filters on what
types of virulence factors could be identified and
because seeing the trajectory of our progress
may help us anticipate future challenges. The
specific virulence factors we illustrate are in-
tended to provide a common starting point for
readers with diverse backgrounds, for exam-
ple, plant pathologists seeking broad explana-
tions for why pathogens so easily overcome crop
resistance, molecular biologists grappling with
the lack of a demonstrable role in virulence for
pathogen molecules known to have host tar-
gets, and genomicists trying to put in biologi-
cal context the many expanded gene classes that
mediate host-pathogen interactions.

One concept that must be explained at
the outset is that pathogens fall broadly into
two classes regarding their interactions with
plants: necrotrophs rapidly kill host tissue
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and often have wide host ranges, whereas
(hemi)biotrophs have a nutritional relationship
with living plant cells (105). (Some biotrophs
induce substantial host cell death later in the
infection and are known as hemibiotrophs. We
use the term biotroph broadly here and dif-
ferentiate hemibiotrophs and strict biotrophs
only as needed.) Many biotrophs show a high
degree of host specificity, and they can be
controlled by the introduction, through plant
breeding, of major resistance (R) genes (42, 78).
Importantly, plant defenses against biotrophs
and necrotrophs are distinct and in competition
with each other (29, 96).

Overview of the Three Eras in
Molecular Plant Pathology Research

The search for the molecular basis for plant-
microbe interactions can be broadly divided
into three eras defined by available tools. The
first was the era of disease physiology, which
extended from the early 1900s until the mid-
1980s. The starting point for the success sto-
ries from this era of “grind and find” research
typically was a cell-free extract with biological
activity. By the 1970s, advances in biochem-
istry enabled purified virulence molecules to be
isolated from these extracts and studied in de-
tail for their effects on plants. The second era
was the era of molecular genetics focused on
one or a few genes, which extended from the
mid 1980s to 2000 for bacterial pathogens, with
slight lags for pathogenic fungi, oomycetes, and
nematodes (we do not address viruses). The
starting point of success stories in the “screen
for gene” era typically was a pathogen with
a strong virulence-related phenotype resulting
from an insertion-marked mutation or a het-
erologously expressed gene. The third era, the
genomics era, began in 2000 with the sequenc-
ing of the complete genome of the bacterial
pathogen Xylella fastidiosa (94). As discussed be-
low, the typical success stories (so far) from
the “patterns that matter” era involve a vali-
dated virulence factor that was initially iden-
tified as a candidate by sequence patterns as-
sociated with its gene. The methods of each

era continue to be improved and used in the
succeeding eras as parts of an ever-expanding
toolkit.

Systems Historically Used to Validate
Virulence Factors

The tools of each era also affect the rigor of the
validation tests for candidate virulence factors.
The following criteria have been used over all
three eras to implicate and validate candidate
virulence factors in phytopathogens:

Capability, Time, and Place

1. Factor is produced by the pathogen.
2. Factor is produced during infection.
3. Factor is delivered to a location in the host

appropriate for its proposed function.

Sufficiency

4. Experiments involving exogenous appli-
cation of the purified factor indicate that
the factor is sufficient for the proposed
virulence function.

5. Gain-of-function (GOF) experiments in-
volving heterologous gene expression in
a related nonpathogen or a less virulent
pathogen, or in transformed plants, in-
dicate that the factor is sufficient for the
proposed virulence function.

Necessity

6. Loss-of-function (LOF) experiments in-
volving a biochemical inhibitor indicate
that the factor is necessary for the pro-
posed virulence function.

7. LOF experiments involving a mutant in-
dicate that the factor is necessary for the
proposed virulence function.

The first three criteria provided circumstan-
tial evidence implicating individual factors in
the disease physiology era, and variations of
these criteria are providing strategies for com-
prehensive identification of candidate virulence
factors now in the genomics era. Similarly, suf-
ficiency tests involving biochemically fraction-
ated candidate virulence factors are now com-
monly replaced with high-throughput assays
involving panels of cloned candidate virulence
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CWDE: cell wall–
degrading enzyme

HST: host-selective
toxin

genes. Although the circumstantial evidence
from sufficiency tests is useful, LOF tests are
needed to rigorously validate a candidate viru-
lence factor.

The following molecular Koch’s postulates
were formulated by Stanley Falkow in 1988
when the era of single-gene molecular genet-
ics was also empowering research in human and
animal pathogenic microbiology (25):

1. The phenotype or property under in-
vestigation should be associated with
pathogenic members of a genus or
pathogenic strains of a species.

2. Specific inactivation of the gene(s) as-
sociated with the suspected virulence
trait should lead to a measurable loss in
pathogenicity or virulence.

3. Reversion or allelic replacement of the
mutated gene should lead to restoration
of pathogenicity.

As noted by Falkow in a personal recollec-
tion 15 years later, these postulates and ex-
panded versions “served their function at the
time as a working hypothesis for the study of
the genetic and molecular basis of pathogenic-
ity” (25). For the purposes of this review,
the term “molecular Koch’s postulates” conve-
niently evokes rigorous validation tests based on
loss of gene function and measurable reduction
in virulence. We discuss below these postulates
and lessons from their application, but our pur-
pose here is not to refine any scheme of tests
that a factor must pass before it can be called a
virulence factor. Rather, it is to foster a broader
look at host-microbe interactions as molecular
systems.

Finding and Validating Virulence
Factors in the Disease Physiology Era
The pathogen stars of this era were the
necrotrophs that, in culture, abundantly
produced plant cell wall–degrading enzymes
(CWDEs), cutinases, host-selective toxins
(HSTs), or enzymes that detoxify phytoalexins
(low molecular weight antimicrobial com-
pounds produced by plants in response to
pathogens). These virulence factors could

be purified from biologically active cell-free
extracts and shown to be sufficient for key
abilities of the pathogen: tissue maceration
and cell killing (pectolytic CWDEs) (5),
degradation of the plant cuticle (cutinase)
(80), host-specific cell killing and/or induced
susceptibility (HSTs) (117, 125), and tolerance
of phytoalexins (e.g., pisatin demethylase)
(66). Particularly broad attention was given to
pectolytic CWDEs because they are produced
in abundance by many necrotrophic bacteria,
fungi, and oomycetes (17). Although studies
using isolated pectic enzymes elucidated their
lethal effects on plant cell walls (5, 99), they did
not reveal whether the enzymes were necessary
for virulence or how the deployment of these
destructive factors was integrated into the
development of the pathogen-host interaction.

Pathogen genetics in this era was limited
to fungal pathogens. Notably, genetic stud-
ies with fungal necrotrophs provided correla-
tive support for the role of the Nectria hema-
tococca pisatin demethylase and the Cochliobolus
spp. HSTs (104, 114, 129). Regarding the lat-
ter, crosses involving Cochliobolus victoriae and
Cochliobolus carbonum, differing in their produc-
tion of the HSTs victorin (oat) and HC toxin
(maize), respectively, produced progeny with a
perfect correlation between the plant specificity
of the HST and the pathogenicity of the fun-
gus producing it (90). These experiments pro-
vided elegant validation of the determinative
role of the two HSTs in pathogenesis, but as
we explain below, the tools of molecular genet-
ics were needed to understand how these HSTs
functioned by exploiting vulnerabilities in plant
defense systems.

In contrast to these limited successes with
necrotrophs, the molecular basis for biotroph
pathogenesis remained a mystery during this
era. Notably, Flor’s gene-for-gene hypothesis,
which was based on genetic studies of flax culti-
vars and the flax rust Melampsora lini, predicted
that pathogens paradoxically carry many genes
conditioning avirulence (27). It took the tools of
molecular genetics to reveal that the products
of such avirulence genes were effector proteins
that are central to biotrophic pathogenesis.
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Cytoplasmic effector
(CE): protein
translocated into plant
cells by a pathogen

Finding and Validating Virulence
Factors in the Era of Single-Gene
Molecular Genetics
The next era enabled homology-driven reverse
genetics to more rigorously test the roles of the
necrotrophic bacterial and fungal virulence fac-
tors found in the physiological era. With the
exception of the HSTs, the vast majority of
these factors failed molecular Koch’s postulates.
Multiple pectate lyase genes in Erwinia chrysan-
themi (now Dickeya dadantii) were deleted, but
mutants retained a residual capacity to cause
disease (84). Multiple CWDE genes in C. car-
bonum were mutated, but only a global regula-
tory mutant unable to express all such enzymes
was reduced in virulence (106). An N. hemato-
cocca cutinase thought to be essential for patho-
genesis based on inhibitor studies was found to
contribute only quantitatively to disease (64,
85, 97). Similarly, the N. hematococca pisatin
demethylase pda1 gene was found to be encoded
on a dispensable chromosome that segregated
with multiple virulence genes in genetic crosses
(68), and a targeted disruption of pda1 quanti-
tatively reduced virulence in pisatin-producing
pea plants (118). To further complicate the pic-
ture, some pathogens were found to produce, in
planta, cutinases and pectic enzymes different
from those found in culture and studied in the
era of disease physiology (7, 45, 128). However,
each one of these factors, as they variously failed
molecular Koch’s postulates tests, revealed
larger pathogen systems involved in plant cell
wall and cutin degradation, phytoalexin toler-
ance, and the modular inheritance of virulence.

Regarding the biotrophs in the molecular
genetics era, forward genetic screens involv-
ing libraries of heterologously expressed genes
from a related pathogen enabled the discovery
of a novel class of virulence factors. These were
the avirulence proteins that are now seen to be
cytoplasmic effectors (CEs) delivered into host
cells by many bacterial, fungal, oomycete, and
nematode pathogens. In bacteria, these genes
were found primarily by the avirulence pheno-
type their GOF expression conferred on oth-
erwise virulent pathogens in pathosystems in-

volving pathogen races and host cultivars inter-
acting in a gene-for-gene manner (47, 98, 122).

In contrast, forward genetic screens for re-
duced virulence of transposon-tagged bacterial
mutants largely yielded genes encoding pro-
tein secretion systems and global regulators.
For example, pioneering screens for mutants
in the genera Pseudomonas and Ralstonia yielded
hrp (hypersensitive response and pathogenic-
ity) mutants, now known to be deficient in the
type III secretion system (T3SS), which deliv-
ers CEs into host cells (12, 60). Importantly,
CE genes were not found in these screens,
and reverse-genetic tests involving CEs pre-
viously found through their avirulence pheno-
types confirmed that their virulence-promoting
phenotypes were typically too weak to be de-
tected in a large-scale, forward-genetic screen
(62). This virulence system architecture char-
acterized by nonredundant protein secretion
systems and global regulators deploying large
sets of redundant factors that make individu-
ally minor contributions to virulence appears
to be widespread among the proteobacterial
necrotrophic and biotrophic pathogens.

Finding and Validating Candidate
Virulence Factors in the Genomics Era

The era of genomics for phytopathogens was
initiated with the sequencing of a strain of X.
fastidiosa that causes citrus variegated chloro-
sis (94). As a bacterium with fastidious nutri-
tional requirements, X. fastidiosa had not been
amenable to the tools of the disease physiol-
ogy and molecular genetic eras. The genome
sequence converted this black box to a series
of testable hypotheses (in the form of can-
didate virulence factors) based on homology
with known virulence genes in other pathogens
(for example, CWDEs) and unusually ampli-
fied gene classes (for example, iron uptake
systems that could account for the chloro-
sis). We now have complete genome sequences
for many of the important phytopathogenic
bacteria, fungi, and oomycetes (http://cpgr.
plantbiology.msu.edu). Each one of these
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Proteins

PAMP HST AECWDE CE

Proteins(or DNA)Proteins

CDETI

ETI

Biochemical

Interactors:

Proteins

Effectors

Apoplastic Cytoplasmic

PAMP HST AECWDE CE

Proteins (or DNA)Proteins

PTI CD

Genetic GOF

Redundancy

Discovery:

a

b

Figure 1
Overview of the discovery, function, and relative internal redundancy of
representative effector classes. (a) Box border colors denote whether the
primary activity of effectors in that class is inducing PTI (green), promoting
necrotrophic pathogenesis (red ), or promoting biotrophic pathogenesis (blue).
Box shading indicates whether the effector and interacting host molecules are
proteins ( gray) or other classes ( yellow), such as peptidoglycan [a pathogen-
associated molecular pattern (PAMP)], plant cell wall polysaccharides [cell
wall–degrading enzyme (CWDE) targets], or nonribosomal peptides and
polyketides [many host-selective toxins (HSTs)]. (b) The pioneer
representatives for each class were discovered by biochemical or genetic
gain-of-function (GOF) tests for plant responses associated with PAMP-
triggered immunity (PTI), effector-triggered immunity (ETI), or various forms
of necrotroph-induced cell death (CD), including that associated with tissue
maceration in the case of CWDE. Relative internal redundancy is indicated
schematically. Note that no pioneer for these effector classes was found
through a mutant phenotype, and the most highly expanded class of effectors
(CE) involves pathogen proteins that largely function through interactions with
plant proteins within plant cells. There are exceptions to this general pattern.
For example, some fungal pectic enzymes also interact with plant
polygalacturonase inhibitor proteins (26), the Pyrenophora tritici-repentis HST is
a protein (15), and some effector proteins may have activities in both the
apoplast and host cytoplasm.

sequences has generated new lists of viru-
lence candidates based on homology, pathogen-
specific paralog amplification, linkage with re-
gions that are variable and/or enriched in
known virulence genes, and other criteria, as
exemplified by work with bacterial genomes
(18, 59, 71, 110, 116). Comprehensive reper-

toires of candidate bacterial CE genes have been
identified through patterns associated with pro-
moters and with targeting-associated regions
in CE proteins (57, 116). Thus, the criteria of
“right time and place” used to implicate in-
dividual virulence factors in previous eras has
been systematically applied to find all candi-
dates for this class of virulence factor. Simi-
larly, in oomycetes, candidate CE genes have
been comprehensively identified though the
combination of protein sequence patterns as-
sociated with secretion from the pathogen and
then translocation into host cells (83). These
CE candidates have been validated by various
translocation tests (24, 88, 115, 123). As a result
of this powerful engine of discovery, many hun-
dreds of candidate CE genes that would have
previously escaped detection because of weak
virulence phenotype are now known. Further-
more, with next-generation sequencing we can
begin to address the concept of super reper-
toires for the pan-genome of various species,
and we are likely to expand our inventory of
phytopathogen CEs into the thousands.

A UNIFIED MODEL OF
PLANT-PATHOGEN
INTERACTIONS: FROM
COMPONENTS TO SYSTEMS

In this section, we place the virulence fac-
tors introduced above in the context of a
model of pathogenesis that unifies many ob-
servations with biotrophic pathogens and pro-
vides a framework for exploring the con-
trasting strategies of necrotrophic pathogens.
Figure 1 summarizes the discovery and func-
tions of representative virulence factors and
other effectors, as broadly defined (36). The
model for biotroph-plant interactions emerged
from a combination of molecular genetic
and biochemical studies of a few exemplary
molecules (1, 32, 42, 131), as discussed be-
low. Our brief description of this model is in-
tended to highlight different systems proper-
ties of plant interactions with biotrophs and
necrotrophs, and point to the origins of system
complexity.
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PAMP: pathogen-
associated molecular
pattern

PTI: PAMP-
triggered immunity

ETI: effector-
triggered immunity

Apoplastic effector
(AE): protein secreted
by pathogen into the
apoplast,
characteristically to
suppress host defenses

Biotrophs: Pathogenesis Mediated by
Cytoplasmic Effector Proteins
We begin with the case of bacteria in the gen-
era Pseudomonas, Xanthomonas, and Ralstonia be-
cause studies with these pathogens nucleated
the current model for biotroph pathogenesis
mediated by CEs. A priori, one might have
postulated that bacterial pathogens would have
evolved to simply evade defensive recognition
in their parasitic niche in the apoplast and that
CEs would primarily promote nutrient release.
Instead, the primary role of CEs is to suppress
plant defense in association with the following
chain of events in which pathogen molecules
(shaded) and plant molecules (unshaded) medi-
ate endless counterattacks (1, 11, 30, 42, 131):

1. Bacteria (commonly with robust abilities
to thrive on plant surfaces or away from
the plant) swim through stomates and
wounds into their parasitic niche in the
apoplast and, in so doing, present plants
with pathogen (or microbe)-associated
molecular patterns (PAMPs or MAMPs),
such as flagellin, LPS, peptidoglycan, and
elongation factor TU (EF-Tu).

2. These common microbial features are
directly recognized by surface-arrayed
pattern recognition receptor-like kinases
and elicit PAMP-triggered immunity
(PTI).

3. Pathogens overcome PTI by translocat-
ing suppressive CEs.

4. Plants may recognize the activity of
one or more of these effectors inside
their cells via resistance (R) proteins.
In most cases, the R proteins [typi-
cally nucleotide-binding leucine-rich re-
peat (NB-LRR) proteins] recognize the
activity of the effector on a guardee or
decoy plant target. Known susceptibil-
ity targets, guardees, and/or decoys in-
clude both proteins and DNA sequences.
The resulting effector-triggered immu-
nity (ETI) typically elicits localized pro-
grammed cell death (PCD) and qualita-
tive resistance.

5. Pathogens can overcome ETI through
mutations in genes encoding effectors

that are betraying them or by deploy-
ing an effector that suppresses the ETI
elicited by one or more effectors. Eva-
sion of ETI through mutation is a suc-
cessful strategy because CE repertoires
are highly redundant and any individual
effector is typically dispensable.

6. Plants evolve or acquire through recom-
bination new R proteins that recognize
the activity of an effector that has ETI-
suppressive activity or potentially any ef-
fector that is prevalent in the pathogen
population. Steps 3 to 6 can be repeated
indefinitely.

Plants deploy hundreds of pattern recog-
nition receptors and R proteins in this
two-layered, outside-inside defense against
bacteria and other biotrophic pathogens in
interactions following the CE/PTI/ETI model
(2). Individual pathogens in the genera Pseu-
domonas, Xanthomonas, and Ralstonia typically
deploy 15 CEs to 50 CEs (20, 44, 79). Fungi,
nematodes, and oomycetes also appear to
have large CE repertoires, with Phytophthora
infestans possibly delivering more than 700
such effectors (34). R genes represent the
most polymorphic class of genes in natural
populations of Arabidopsis thaliana (16), and
genomics has revealed that pathogen CE gene
repertoires are also highly polymorphic (3, 34).

Two variations in the ETI aspect of
the CE/PTI/ETI model that involve fungal
pathogens are noteworthy. First, Cladosporium
fulvum is unusual among biotrophic fungi in
that it remains entirely intercellular in its host
(tomato) leaves and relies on apoplastic effec-
tor (AE) proteins to interdict extracellular com-
ponents of the PTI system (100). These AEs
are under ETI surveillance by transmembrane
R protein sentinels with extracellular LRR do-
mains (41). Second, the flax rust pathogen M.
lini (an obligate biotroph) translocates CEs,
such as AvrL567 variants, that are directly rec-
ognized by cognate cytoplasmic NB-LRR R
proteins (23). That is, the flax R proteins ap-
pear to monitor the structure rather than the
activity of their cognate CEs. The implications
of these variations are discussed below.
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Regarding the development of the
CE/PTI/ETI model of biotroph-plant
interactions, it is noteworthy that PTI was
the final piece of the puzzle to fall into place.
The ability of general elicitors to elicit local
induced resistance had been known since
the disease physiology era (91), but the PTI
concept crystallized with the discovery that
bacterial flagellin contained a 22-amino-acid
region that functioned as a PAMP and was
recognized by the Arabidopsis receptor-like
kinase FLS2 (14, 31, 33). Whereas research
with CE/ETI components had been driven
by the strong phenotypes associated with
gene-for-gene interactions, the lack of such
phenotypes associated with polymorphisms in
PAMP/PTI components hid the system from
geneticists. Rather, a biochemical approach
was used to discover flg22 and thereby convert
the local induced resistance phenomenon to
the PTI molecular model (32).

It is also worth noting the value of bio-
chemical study of the P. syringae pv. tomato CE
AvrPto and the tomato resistance protein Pto
in founding the ETI model. Pto was the first
ETI resistance gene to be cloned (65). AvrPto
directly interacts with the Pto serine/threonine
kinase, but ETI activation requires the Prf
NB-LRR (87, 103). The crystal structure of
the AvrPto-Pto complex reveals AvrPto to be
an inhibitor of Pto kinase activity (127). AvrPto
also directly interacts with the FLS2-BAK1
coreceptor complex to inhibit its kinase activity
and suppress PTI (92, 126). Since Pto has not
been shown to have a role in PTI, the current
model is that Pto is a decoy kinase whose
perturbation by AvrPto is detected by Prf,
thus eliciting ETI (131). Therefore, R protein
sentinels may recognize the activity of CEs
through their effects on PTI decoys or PTI
guardees, which integrate the dual activities of
many CEs in both PTI and ETI.

Necrotrophs: Pathogenesis Mediated
by Plant Cell Wall–Degrading
Enzymes, Host-Selective Toxins, and
Potentially Many Other Factors
Turning to the necrotrophic pathogens, we
will briefly describe three pathosystems that

illustrate the greater diversity in the pathogenic
strategies of these pathogens. First, the pec-
tolytic CWDEs of the soft-rot enterobacteria
represent an amplified class of effectors that
act in the apoplast according to the follow-
ing abbreviated interaction scenario, with the
pathogen attack shaded and the plant response
unshaded throughout this section (22, 73, 109,
110):

1. Pectic enzymes secreted by the pathogen
type II pathway cleave internal glycosidic
linkages in structurally important pectic
polymers in the middle lamella and pri-
mary cell walls in dicot tissues, resulting
in tissue maceration and plant cell death.

2. Plants activate defenses in response to
oligogalacturonate products of pathogen
enzyme activity.

3. Pathogens deploy pectic enzymes, along
with defense suppressors, only when a
quorum for successful pectolytic attack is
achieved.

Pectic enzymes are produced in the late
stage of complex pathogenesis that can also in-
volve latent infections with low levels of bac-
teria (109). Although the pectic enzyme reper-
toires of necrotrophs and the CE repertoires of
biotrophic bacteria are similarly amplified and
possess internal redundancies (8), they appear
fundamentally different from the perspective of
interaction systems. For example, there is no ev-
idence that individual pectic enzymes are under
immune surveillance, and their repertoires are
conserved in three Pectobacterium species (28).
Furthermore, the soft-rot enterobacteria typi-
cally have broad host ranges, and there is no
known R gene resistance against them. Thus,
disease incidence is influenced more by envi-
ronmental conditions than by host genotype.
Because plants can detect the oligomeric prod-
ucts of pectic enzymes as damage-associated
molecular patterns (DAMPs) (11, 22), a key
aspect of soft-rot enterobacterial virulence
appears to be activation of pectic enzyme
gene expression only when a bacterial quo-
rum has been sensed (43, 77), and coordinated

464 Schneider · Collmer

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

01
0.

48
:4

57
-4

79
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

.S
. D

ep
ar

tm
en

t o
f 

A
gr

ic
ul

tu
re

 o
n 

09
/2

1/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PY48CH22-Collmer ARI 5 July 2010 20:24

expression of the T3SS may further aid the de-
feat of DAMP-triggered immunity (61).

Turning to the necrotrophic fungal
pathogens, we find in the genus Cochliobolus
a genomic amplification of nonribosomal
peptide synthetases and polyketide synthases,
some of which produce HSTs (48, 52).
An interesting aspect of diseases involving
Cochliobolus HSTs is the sudden appearance of
races producing them in cereal crops through
inadvertent breeding for susceptibility (129).
One example of this involves C. carbonum
race 1, which produces HC-toxin, a cyclic
tetrapeptide HST that mediates the following
interaction sequence involving a lethal leaf
spot and ear mold in maize (40, 67, 74, 81):

1. HC-toxin is produced by race 1 and has
the capacity to inhibit histone deacetylase
activity, thus inhibiting defense gene ex-
pression and promoting disease.

2. HC-toxin reductase, encoded by Hm1, is
present in most plants and detoxifies HC-
toxin, thus conferring resistance.

3. A rare hm1 mutant occurring in a maize
breeding program is sensitive to HC-
toxin and is aggressively attacked by C.
carbonum race 1.

4. Susceptible hm1 plants are removed from
the breeding program, thus preventing
disease outbreak.

Given that HC-toxin can inhibit histone
deacetylase activity in all plants and HC-toxin
reductase is produced by virtually all cereals,
it appears that C. carbonum race 1 causes an
ancient disease that was largely extinguished by
the ancient evolution of HC-toxin reductase
(40, 95).

C. victoriae, which produces victorin, a cy-
clized pentapeptide HST, yields another les-
son with major implications regarding the chal-
lenge that plants face in defending themselves
against both necrotrophs and biotrophs (124,
129). The rise and fall of C. victoriae as an agro-
nomic problem can be illustrated as follows:

1. Oats carrying the crown rust (Puccinia
coronata) resistance gene Pc-2 derived

from cultivar Victoria become widely
planted in the 1940s.

2. C. victoriae produces victorin, which elic-
its Pc-2-dependent PCD resulting in
pathogen growth and the Victoria blight
of oats epidemic.

3. Oats carrying Pc-2 are removed from
agricultural use, thus extinguishing the
disease outbreak.

Recent studies involving Arabidopsis, which
is more genetically tractable than allohexaploid
oat, have revealed that victorin-induced PCD
requires an NB-LRR and thioredoxin h5 (63,
101), which also mediates redox changes ac-
tivating the master defense regulator NPR1
(102). The observations with oat and Arabidop-
sis collectively point toward victorin subverting
ETI defenses against biotrophs, such as P. coro-
nata, to promote susceptibility to a necrotroph.

Revisiting Models of Biotrophic and
Necrotrophic Pathogenesis from a
Systems Perspective

Three systems properties of CE/PTI/ETI
interactions are noteworthy: (a) system incom-
patibilities at the ETI level (CE recognized
by sentinel) trump everything else in the
interaction and result in resistance; (b) ETI
involves interactions between CEs and host
sentinels that are either proteins or DNA
sequences, which enables rapid coevolution by
both partners; and (c) the resulting arms race
of surveillance and evasion at the ETI level
may produce large repertoires of interacting
proteins and robust pathosystems (42). In-
terestingly, the C. fulvum–tomato interaction
appears to have independently evolved systems
properties similar to those of tomato–P.
syringae interactions but with AE proteins and
extracellular ETI sentinels (100). Remarkably,
these similarities extend to indirect ETI
recognition involving decoy proteins, which
indicates the broad applicability of the decoy
extension of the PTI/ETI model (113). On the
other hand, the contrasting direct interactions
of an allelic series of CE and R proteins in the
M. lini–flax pathosystem makes the search for
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the susceptibility targets of these CEs a high
priority because the findings could yield a new
model for the CE/PTI/ETI system operating
in obligate biotrophic pathogens.

In contrast to the biotrophs, the interactions
of necrotrophs with plants are not dominated
by CEs or similar AEs, and the outcomes
of these interactions are not determined by
ETI. Rather, the necrotroph diseases de-
scribed above involve interactions mediated
by classes of molecules that are more slowly
evolving, for example, pectic polysaccharides
in the plant cell wall and products of fungal
nonribosomal peptide synthetases. In general,
these pathosystems appear more fragile than
biotroph pathosystems, with disease outbreaks
resulting from jackpot environmental con-
ditions in the case of soft-rot enterobacteria
or jackpot host genotypes in the case of
Cochliobolus spp. This observation leads to
two major systems-level questions: (a) What
enables these pathogens to lurk in plant casinos
and, in the case of Cochliobolus spp., prolifically
coin new gambling chips in the form of novel
nonribosomal peptides and polyketides? (b)
Given the differing and conflicting defenses of
plants against biotrophs and necrotrophs, why
don’t necrotrophs generally subvert the ETI
system as C. victoriae appears to do?

Pseudomonas syringae Cytoplasmic
Effector Protein Repertoires as a Test
Case for Systems-Level Approaches

As described above, a key aspect of the CE
repertoires of most biotrophic pathogens is

EMERGENT PROPERTIES
“It is thus likely that over the coming years and decades biological
sciences will be increasingly focused on the systems properties of
cellular and tissue functions. . .These properties are sometimes
referred to as ‘emergent’ properties since they emerge from the
whole and are not properties of individual parts” (72).

“The scientific meaning of emergent, or at least the one I use,
assumes that, while the whole may not be the simple sum of its
separate parts, its behavior can, at least in principle, be understood
from the nature of its parts plus the knowledge of how these parts
interact” (19).

internal redundancy, which permits individual
CEs to be lost with minimal virulence penalty
when the local host plant population acquires a
corresponding new R gene. This phenomenon
renders R gene–mediated resistance unstable in
the field for many important crop pathosys-
tems, and it explains why many CEs fail molec-
ular Koch’s postulates tests. The CE repertoire
of P. syringae pv. tomato DC3000 has been par-
ticularly well characterized, and 28 CEs appear
to be actively deployed (with several others en-
coded by apparent pseudogenes or more weakly
expressed genes) (20, 57). Genome sequencing
and comprehensive analysis of CE repertoires
in other pathovars of P. syringae and another
strain of pathovar tomato have revealed that the
repertories are surprisingly different, even for
pathogens of the same host (3, 57). DC3000
is a pathogen of tomato and the model plants
A. thaliana and Nicotiana benthamiana (if the
hopQ1-1 CE gene, which acts as an avirulence
determinant in N. benthamiana, is deleted), and
a growing collection of combinatorial CE gene
polymutants is available for this pathogen (49,
121). Thus, DC3000 is an ideal pathogen for
exploring the potential operation of CE reper-
toires as systems with emergent properties (see
sidebar, Emergent Properties).

Such emergent properties could arise from
interplay among CEs and structured redundan-
cies in CE repertoires. As an example of inter-
play, loss of virPphA (hopAB1) from P. syringae
pv. phaseolicola 1449B results in avirulence in
bean, the normal host, because of failure to sup-
press ETI triggered by another effector in the
1449B repertoire (39). As an example of redun-
dancy, deletion of individual CE genes or many
combinations of CE genes can have little effect
on reducing DC3000 growth in N. benthamiana
or other hosts (121). However, deletions in-
volving certain other combinations yield strong
reductions in growth. For example, deletion of
both avrPto and avrPtoB or of avrE, hopM1, and
hopR1 strongly reduce growth in tomato and
N. benthamiana (49, 55). Importantly, deletion
from DC3000 of fliC, which encodes flagellin,
the major PAMP detected by N. benthamiana,
restores growth to the �avrPto�avrPtoB
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REG: redundant
effector group

mutant but not to the �avrE�hopM1�hopR1
mutant (49). Furthermore, AvrPto and AvrP-
toB both target PAMP coreceptors (92, 126),
whereas HopM1 and possibly AvrE and
HopR1 disrupt vesicle trafficking associated
with antimicrobial deployment (35, 70). These
observations suggest that at least a part of
the internal redundancy in the DC3000 CE
repertoire is structured around redundant
effector groups (REGs) that target a particular
process in PTI, as depicted in Figure 2.

Plant defenses have a similar internal redun-
dancy, requiring polymutants for strong pheno-
types and gaining system robustness through
democratic signaling networks (111). Further
support for redundancy and system robustness
comes from the finding that forward genetic
screens for Arabidopsis mutants impaired in per-
ception of the EF-Tu PAMP yielded endo-
plasmic reticulum quality control factors in-
volved in the processing of EFR (the cognate
pattern recognition receptor for EF-Tu) rather
than downstream signaling components (54,
86). Coevolution with pathogen CE repertoires
is likely to be a factor driving such defense re-
dundancy. Disentangling the complexities in
pathogen CE repertoires and plant PTI compo-
nents will be an important challenge in the next
decade, as will be discussed in a later section.

THE CHALLENGE OF DEFINING
VIRULENCE FACTORS AND
EFFECTORS

In previous sections, we have used the example
of CEs to illustrate the need to understand
virulence factors as components of complex sys-
tems. Here, we address the problems this com-
plexity creates when we try to refer to effectors
and other virulence factors unambiguously in a
few words. Attempts to differentiate virulence
and pathogenicity factors have a long history in
plant pathology. Indeed, a primary goal of the
disease physiology and early molecular genetics
eras was to identify first the pathogenicity
factors that were qualitatively essential for
pathogenesis and then the virulence factors that
contributed quantitatively to pathogen growth

Pathogen

PAMPs

C
REG 1

REG 3? REG 4?

REG 2

ETI

D
R

A

B

REG 4?
Gene

expressionREG 3?
Signal

transduction 

CC
REG 2D

Defense
deployment

PAMPsPAMPsPAMPs

REG 1 R

A

B

Perception

PTI

Figure 2
Model for the possible role of redundant effector groups (REGs) in assuring
that key processes in pathogen-associated molecular pattern (PAMP)-triggered
immunity (PTI) are blocked despite mutational loss of any cytoplasmic effector
in the repertoire. A REG comprises effectors that function redundantly to
block one of the depicted high-level processes leading to PTI (49). Effectors A
and B redundantly block PAMP perception. Thus, if effector B is detected by
an R protein sentinel, the effector gene can be jettisoned from the pathogen
population with little virulence penalty. REG 2 is depicted as blocking vesicle
trafficking, a central process in antimicrobial deployment. Plants appear to use
signaling bypasses and various forms of internal redundancy in each high-level
process to achieve PTI robustness. Thus, loss of single pathogen effectors or
single plant defense components has minimal effect on PTI system
performance in a typical biotroph-plant interaction (49, 111). Key questions to
address with disassembled effector repertoires include whether there are REGs
targeting other PTI processes, and whether any minimal subset of effectors that
can restore strong pathogen growth does so by completely blocking a single
high-level PTI process (for example, through deployment of an additional
member of REG 1 to block all PAMP perception) or by attacking multiple
high-level processes. Note that pathosystems with reduced redundancy may
allow single effectors to have a stronger role. Thus, the absence of alternative
deployable defenses in the host and other REG 2 effectors in the pathogen
could endow effector C with a strong phenotype.

and symptom development (93). As molecular
genetic tools became available, molecular
Koch’s postulates could be used to differentiate
and validate pathogenicity and virulence fac-
tors based on the strength of mutant virulence
defects.
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An alternative approach to classifying
virulence genes was proposed in 2001 when
Wassenaar & Gaastra (119) addressed the
challenge of where to draw the line in the
annotation of virulence genes. They proposed
three classes based on broad functions rather
than degree of contribution to virulence:
(a) true virulence genes code for factors or
enzymes producing factors that are involved
in interactions with the host and are directly
responsible for the pathological damage dur-
ing infection; (b) virulence-associated genes
encode factors that are involved in the deploy-
ment (regulation, secretion, processing) of the
products of the true virulence genes; and (c) vir-
ulence lifestyle genes encode factors promoting
host colonization or tolerance of host defenses,
such as reactive oxygen and phytoalexins.

More recently, Hogenhout and coworkers
(36) proposed the broad definition of effectors
that we have used here. This definition also in-
cludes PAMPs. This use of effector has the ad-
vantage of a single term intuitively and broadly
encompassing the pathogen molecules that di-
rectly interact with host targets, whether pro-
moting disease or eliciting defense. We think
this inclusive definition will better serve the
development of systems-level approaches, al-
though its application often requires delineat-
ing various subclasses of effectors, as we have
done here for CWDEs, AEs, CEs, and HSTs.

All of these terms for virulence factors (36,
119) can be integrated in the following general
statements about pathogen genes involved in
host interactions:

1. The true virulence genes encode effec-
tors, which often make only quantitative
contributions to virulence.

2. Virulence-associated genes direct the de-
ployment of effectors and the develop-
ment of eukaryotic pathogen specialized
infection structures (e.g., appressoria),
and these are often qualitatively needed
for pathogenicity.

3. Virulence lifestyle genes encode antimi-
crobial tolerance factors that are not
considered effectors (for example, those

involved in tolerance to reactive oxy-
gen species and phytoalexins) and other
factors promoting pathogen colonization
of host tissues, and these factors often
make only quantitative contributions to
virulence.

The term virulence-related would encom-
pass all of these genes as well as many others
that are hard to classify because they serve ba-
sic cellular functions that are particularly im-
portant during pathogenesis, such as the P. sy-
ringae pv. tomato DC3000 DsbA periplasmic
protein disulfide isomerase (46). The quanti-
tative contribution to virulence of many viru-
lence lifestyle genes may result from functional
redundancies, as with the effectors.

We must emphasize that these statements
describe typical cases, and there are informa-
tive exceptions to each statement. For exam-
ple, one type III effector, DspE, is qualitatively
essential for Erwinia amylovora pathogenicity
(10, 27a), whereas the T3SS pathway itself
contributes only quantitatively to virulence in
the soft-rot enterobacteria (6, 37, 82). Excep-
tional pathosystems can be experimentally use-
ful for studying the function of individual viru-
lence factors, and they yield insights into the
virulence system of which the effector is a
component.

The E. amylovora case is particularly illus-
trative in this regard because DspE is a ho-
molog of the P. syringae pv. tomato DC3000
AvrE effector, which was described above as be-
ing a member of a redundant effector group in
DC3000. AvrE can restore partial virulence to
an E. amylovora dspE mutant (10), which sug-
gests that the primary difference between these
effectors is the system of which they are compo-
nents. In fact, redundancy in T3SS translocon
components and effectors is greater in P. sy-
ringae than in E. amylovora despite many over-
all similarities in the two systems (9, 50). The
differing strengths of avrE and dspE mutant
phenotypes raise fundamental questions about
the comparative evolution of P. syringae and E.
amylovora virulence systems.

468 Schneider · Collmer

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

01
0.

48
:4

57
-4

79
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

.S
. D

ep
ar

tm
en

t o
f 

A
gr

ic
ul

tu
re

 o
n 

09
/2

1/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PY48CH22-Collmer ARI 5 July 2010 20:24

GO: Gene Ontology

Because the identification of many CEs in
the genomics era is based solely on sequence
patterns and validation tests involving translo-
cation rather than virulence, the majority of
recently identified effectors have not been
shown to make any contributions to virulence
(20, 44, 79). Furthermore, CE gene repertoires
are likely to contain several genes that are
inactive even though they encode bona fide
CEs. The P. syringae pv. tomato DC3000
HopAI1 phosphothreonine lyase is an example
of this (53, 89, 115, 130). Given the value
of comprehensiveness for systems analysis of
effector repertoires, it seems more useful to
include the hopAI1 gene (with an appropriate
footnote) than to drop it from consideration.
For example, its apparent inactivation may be
found to have some significance from a systems
perspective.

In summary, whether a given factor qual-
itatively promotes pathogenicity or quantita-
tively promotes virulence is likely to be more a
property of the system than the factor. During
the current genomics-driven discovery phase of
research, a relatively relaxed and inclusive use
of the terms virulence-related, virulence fac-
tor, and effector in peer-reviewed journal arti-
cles and informal discussion seems appropriate
given the utility of complete lists of candidate
factors and the thicket of exceptions that would
arise with any attempt at more stringent defini-
tions. Furthermore, systematic efforts to move
validated effectors into the confirmed virulence
factor category by applying molecular Koch’s
postulates based on subtle virulence phenotypes
may return little insight for the effort. Analy-
ses based on combinatorial genetic dissection
of pathosystems, as illustrated above, are more
likely to yield strong virulence phenotypes and
insights into the functions of effectors within
systems. Furthermore, as we discuss next, gene
ontology (GO) terms provide a parallel sys-
tem for systematically accumulating informa-
tion about virulence factors that possesses the
rigor lacked by our advocated relaxed use of vir-
ulence factor and effector in broad discussions
of virulence.

DEVELOPING COMMUNITY
RESOURCES FOR STUDYING
PLANT-PATHOGEN
INTERACTION SYSTEMS

Our hypothesis that virulence factors func-
tion as components of complex host-pathogen
interaction systems with emergent properties
leads to three strategic questions. What is the
most efficient way to gather information on an
individual factor that reveals its function in the
system? How does the operation of the factor fit
into conceptual models of plant-pathogen in-
teraction, such as the PTI/ETI model? How
can we most efficiently discover emergent prop-
erties in pathosystems that may predict addi-
tional system components, refine interaction
models, and lead to new disease management
strategies? To address these questions, we see
the need for two complementary knowledge
bases. The first is reductionist, factor-centric,
components-biology knowledge captured with
GO annotation. The universal nature of GO
terms will facilitate comparisons with other
virulence factors in diverse systems, but GO
terms by their nature are not system specific.
In contrast, the second knowledge base will be
pathosystem specific and systems biology ori-
ented (72), with a focus on how each factor
functions in the context of other virulence fac-
tors in that system (see sidebar, Systems Bi-
ology). It is also important to note here that
continued development of mechanistic models,
such as those embodied in the guard and de-
coy hypotheses, will aid both the factor-centric
and pathosystem-centric approaches. As mod-
els become validated, they can be integrated
into GO, and similarly, the models provide a
framework to guide the probing of individual
pathosystems.

SYSTEMS BIOLOGY

“Systems biology. . .investigates the behavior and relationships
of all of the elements in a particular biological system while it
is functioning. These data can then be integrated, graphically
displayed, and ultimately modeled computationally” (38).
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Using Gene Ontology to Capture
Components Biology Advances

The GO Consortium was founded in 1998
through collaboration of three model eu-
karyotic genome communities and provides a
system for all biologists to annotate genes
using a universal vocabulary and standard-
ized evidence codes (4). The Plant-Associated
Microbe Gene Ontology (PAMGO) interest
group, involving genome projects addressing
phytopathogenic bacteria, fungi, oomycetes,
and nematodes, was formed in 2004 and has
worked with the GO Consortium to generate
more than 800 new GO terms (107). GO in-
volves three ontologies that separately address
biological process, molecular function, and cel-
lular components. Many of the new terms ad-
dress biological processes associated with host-
microbe interactions. As a result of PAMGO
efforts, a dual taxon capability now permits cap-
turing the NCBI taxon IDs of the microbe
producing a factor and the host in which the
factor acts (107). GO terms capture informa-
tion on a factor using a hierarchy-like struc-
ture that can accommodate increasingly gran-
ular information about the biological function,
biochemical activity (including interaction with
a host factor), and location of the factor (in-
cluding the cellular location in the host). Given
that the terms are universal and not system-
specific, they foster broad comparisons. With
wider GO annotation of pathogen genomes,
we will have a better ability to compare the
repertoires and functions of CEs produced by
diverse pathogens attacking diverse hosts, in-
cluding both plants and animals. Recent issues

A FRAMEWORK FOR SYSTEMS BIOLOGY

1. Define all of the components of the system.
2. Systematically perturb and monitor components of the system.
3. Reconcile the experimentally observed responses with those

predicted by the model.
4. Design and perform new perturbation experiments to distin-

guish between multiple or competing model hypotheses.

of BMC Microbiology and Trends in Microbiol-
ogy are focused on PAMGO and include several
effector-related articles (13, 56, 58, 108).

It is helpful here to compare the use of
terms in peer-reviewed journal articles and GO.
A journal article will typically provide context
and clarifications that diminish potential confu-
sion arising from nonuniform use of terms such
as virulence factor and effector. However, this
nonuniformity thwarts the utility of such infor-
mation for comparative genomics and systems
biology. In contrast, gene annotations lack such
context and therefore must capture functional
data with a universal vocabulary. GO addresses
this problem and in so doing makes functional
annotation machine readable. Hence, invest-
ment in ongoing GO annotation should have a
multiplier effect on the value of new data about
CEs and other virulence factors. Similarly, on-
going work will be needed to update and expand
GO terms that capture our growing under-
standing of the biological processes underlying
host-microbe interactions. Brett Tyler, who led
the PAMGO effort, has suggested that journals
and granting agencies encourage researchers to
capture experimental results in GO annotation
as part of the publication process (112).

Pathosystem-Specific Resources
to Advance Systems Biology

We anticipate two phases in the development
of resources for exploring systems-level prop-
erties of plant-pathogen interactions. These re-
sources will generally support an established
framework for systems biology (see sidebar,
Framework for Systems Biology) (38). The first
phase will be centered on individual pathosys-
tems and their research communities and will
provide initial models and pilot tests for stan-
dardized assays and associated data types. These
tests include assays for interaction processes
such as PAMP perception, signal transduction,
and the shift in hemibiotroph pathogenesis to
the lesion formation phase. Informal, yet in-
creasingly refined, models of plant-pathogen
interactions are likely to yield better mark-
ers for specific subprocesses. These informal
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models and standardized assays can then guide
the development of the second phase, which
will integrate data from many pathosystems
and will necessarily involve further standard-
ization and formal structure. The primary aim
of the first phase will be to help laboratory
biologists explore the emergent properties of
virulence systems and integrate these findings
with molecular-level interaction models. Im-
portantly, the extensive datasets resulting from
systems-level approaches can enhance hypoth-
esis formulation in components biology (69).

The starter kits for research communities
in the first phase will likely include (using
CE repertoires as an example) (a) pathosys-
tems involving genetically tractable partners
that allow parallel disassembly of CE reper-
toires and defense components and therefore
genetics-squared study of the interaction (76);
(b) complete inventories of CEs and interacting
host proteins (with all relevant genes GO
annotated); (c) community standards for assay
procedures and data types; (d) community Web
resources for collecting all data in a machine-
readable form and enabling researchers to gen-
erate tables and matrices (genotype x system
performance) to aid visualization of patterns;
and (e) an interaction model as a framework
to guide hypothesis formulation and testing
as well as integration of new system compo-
nents knowledge. Visual models presented
in publications ranging from comprehensive
review articles to Cell SnapShots, will continue
to be important (42, 75). However, it seems
inevitable that Web-based resources and the
tools of the second phase will be needed to
adequately display the full complexity and
dynamic nature of interaction models.

The second phase in plant-pathogen
systems biology will support computational
analysis of emergent behaviors and will
require the development and adoption of
universal standards for data types, formal
concept analysis, and mechanistic dynami-
cal models. Visually oriented tools for the
construction and display of complex models
will almost certainly play a central role.
The initiatives that have led to the Systems

Biology Graphical Notation (51) and associated
software systems are forerunners of the kind of
conceptual and computational infrastructure
that will be needed. Computational modeling
will have far more power to discern emergent
properties, predict exploitable vulnerabilities,
and permit more rigorous analysis of plant-
pathogen interaction systems in the larger
context of biological systems with properties of
robustness (21). Whereas first-phase efforts can
be nucleated by various pathosystem research
communities using existing resources with
minimal external support, the development
of the second phase will require significant
coordination and external support.

CONCLUSIONS AND
CHALLENGES

We began this review with a quote from War-
ren Weaver (120), a pioneer in mathematical
communication theory and a visionary direc-
tor of the Rockefeller Foundation’s Division of
Natural Sciences and Agriculture. Now, more
than half a century later, Weaver’s challenge is
being met with the tools of systems biology and
applied to levels of complexity from the molec-
ular to the ecological. Focusing on plant disease
here, we have explained that many pathogen
virulence factors appear to function as compo-
nents of complex systems. By using a systems
perspective we can better understand the basis
for discovering the known classes of virulence
factors over three eras of advancing technology,
and we can see that the rising trajectory of dis-
covery leads to a fourth research era that will be
integrated with systems biology.

We can also see that the coevolution of
pathogen effector repertoires and host de-
fense systems, particularly in the context of the
CE/PTI/ETI model, has produced redundancy
on both sides of the interaction that diminishes
the role of individual factors while increasing
system robustness. By studying and disassem-
bling complete virulence factor repertoires, we
can better reveal hidden functions of individual
factors and features of the system that confer
robustness. Such systems-level knowledge may
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offer practical benefits in guiding the breeding
of durable crop resistance and in enabling bet-
ter reading of threat potentials in the genome
sequences of emerging pathogens.

The primary means for advancing our un-
derstanding of pathogenesis until now has been
peer-reviewed articles that provide molecular
Koch’s postulates validation and new insights
into the molecular function of a virulence fac-
tor. However, this model does not scale well
with the extensive interplay that virulence fac-
tors are now seen to have with other factors in
their pathosystem and with the large numbers
of such factors. Given the challenge of com-
plexity, the most efficient progress is likely to
be made by applying a balance of reduction-
ist (components biology) and integrative (sys-
tems biology) approaches and by developing
ways for components biology to more easily

facilitate systems biology. This could be done
by components biologists consistently integrat-
ing major results with systems-based models of
interactions, capturing new knowledge in GO
annotation, and contributing relevant data to
systems-oriented databases. This transforma-
tion in the way in which knowledge grows could
be fostered through modest investments in in-
frastructure for model pathosystems, support
for Web-based resources that foster commu-
nity development of unified interaction mod-
els, new journal policies encouraging GO an-
notation, and curatorial resources to aid such
annotation. Rewards for such an approach
could include better prioritization of compo-
nents biology research, more rapid develop-
ment of predictive models of plant-pathogen
interactions, and new ways to manage plant
diseases.

SUMMARY POINTS

1. Microbial pathogens disarm and parasitize plants largely through secreted virulence
molecules, but identifying and validating these factors is often thwarted by high lev-
els of functional redundancy.

2. The search for virulence factors can be broadly divided into three eras defined by available
tools: disease physiology and biochemistry (“grind and find”), single-gene molecular
genetics (“screen for gene”), and genomics (“patterns that matter”). Consideration of the
nature of the factors found in each successive era yields broad lessons about pathogen-
plant interactions.

3. The myriad and phylogenetically diverse pathogens of plants can be broadly divided into
two classes based on their nutritional relationship with host tissues, with biotrophs and
necrotrophs growing in living and rapidly killed tissue, respectively.

4. According to a recently developed, unified model, the primary virulence factors for
biotrophic pathogens are proteins, collectively referred to as cytoplasmic effectors, which
are delivered by the pathogen into host cells to defeat defense mechanisms triggered by
host cell–surface associated receptors while evading or defeating internally arrayed anti-
effector detection agents such as R-proteins.

5. Coevolutionary arms races between pathogens and plants have generated large reper-
toires of cytoplasmic effectors that are collectively essential but individually dispensable
and plant defenses that possess parallel redundancies.

6. Cytoplasmic effectors and other virulence factors increasingly will be studied as virulence
system components, with knowledge about the system being as important as knowledge
about the component. Thus, understanding the complex ensemble of molecular inter-
actions underlying pathogen-plant interactions will require increasing integration with
the tools of systems biology in a fourth era of research.

472 Schneider · Collmer

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

01
0.

48
:4

57
-4

79
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

.S
. D

ep
ar

tm
en

t o
f 

A
gr

ic
ul

tu
re

 o
n 

09
/2

1/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PY48CH22-Collmer ARI 5 July 2010 20:24

FUTURE ISSUES

1. How can we encourage a research community that traditionally disseminates components
biology advances through journal articles to make this information machine readable and
therefore accessible for systems biologists?

2. What is the best way for a diverse research community working with many pathosystems
to develop tools to support computational approaches to the study of emergent properties
in those systems and to enhance our ability as biologists to comprehend and communicate
these findings?

3. How do we enhance the use of systems-level knowledge in pathogen genomics, for
example, to predict the threat potential of emerging pathogens or rapidly develop science-
based response plans?

4. What types of information will most rapidly reveal emergent properties in the cytoplasmic
effector repertoires of model pathogenic bacteria, fungi, oomycetes, and nematodes that
may predict broadly important phenomena, such as the basis for pathogen host specificity
and plant nonhost resistance?

5. What are the best targets in agriculture for the application of systems-level approaches
to enhance crop health and productivity?
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